
rspb.royalsocietypublishing.org

Research
Cite this article: Vestergaard JS, Twomey E,
Larsen R, Summers K, Nielsen R. 2015 Number
of genes controlling a quantitative trait in a
hybrid zone of the aposematic frog Ranitomeya
imitator. Proc. R. Soc. B 282: 20141950.
http://dx.doi.org/10.1098/rspb.2014.1950

Received: 7 August 2014
Accepted: 26 March 2015

Subject Areas:
evolution, genomics

Keywords:
Ranitomeya imitator, hybridization,
image analysis, quantitative phenotyping

Author for correspondence:
Jacob S. Vestergaard
e-mail: jsve@dtu.dk

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rspb.2014.1950 or
via http://rspb.royalsocietypublishing.org.

Number of genes controlling a
quantitative trait in a hybrid zone of the
aposematic frog Ranitomeya imitator
Jacob S. Vestergaard1, Evan Twomey2, Rasmus Larsen1, Kyle Summers2

and Rasmus Nielsen3

1Department of Applied Mathematics and Computer Science, Technical University of Denmark, Building 324/130,
Matematiktorvet, 2800 Kgs Lyngby, Denmark
2Department of Biology, East Carolina University, Howell Science Complex N314, Greenville, NC 27858, USA
3Department of Integrative Biology, University of California Berkeley, 4098 VLSB, Berkeley, CA 94720, USA

JSV, 0000-0001-6299-3843

The number of genes controlling mimetic traits has been a topic of much
research and discussion. In this paper, we examine a mimetic, dendrobatid
frog Ranitomeya imitator, which harbours extensive phenotypic variation
with multiple mimetic morphs, not unlike the celebrated Heliconius system.
However, the genetic basis for this polymorphism is unknown, and not easy
to determine using standard experimental approaches, for this hard-to-breed
species. To circumvent this problem, we first develop a new protocol for auto-
matic quantification of complex colour pattern phenotypes from images.
Using this method, which has the potential to be applied in many other sys-
tems, we define a phenotype associated with differences in colour pattern
between different mimetic morphs. We then proceed to develop a maxi-
mum-likelihood method for estimating the number of genes affecting a
quantitative trait segregating in a hybrid zone. This method takes advantage
of estimates of admixture proportions obtained using genetic data, such as
microsatellite markers, and is applicable to any other system where a pheno-
type has been quantified in an admixture/introgression zone. We evaluate
the method using extensive simulations and apply it to the R. imitator
system. We show that probably one or two, or at most three genes, control
the mimetic phenotype segregating in a R. imitator hybrid zone identified
using image analyses.

1. Introduction
The analysis of phenotypic and genetic variation in geographical areaswhere two
or more phenotypically distinguishable groups of organisms meet and exchange
genes has been of substantial interest to evolutionary biologists [1–3]. The evol-
utionary dynamics in these zones, referred to as hybrid zones, introgression
zones or admixture zones depending on context, provide us a basis to study pro-
cesses relating to speciation and for understanding the genetic and ecological
underpinnings of adaptive traits, including mimetic and aposematic traits. Sub-
stantial work has been done on such systems, including the now classical work
on the Bombina bombina versus Bombina variegata hybrid zone [4,5] and the
hybrid zones between various species of Heliconius butterflies [6–8]. Of primary
interest in these studies is to understand the genetic basis of the phenotypic traits,
how selection is affecting these traits, and to understand the relative role of popu-
lation history, gene flow and natural selection in determining the evolutionary
dynamics of the hybrid zone. Furthermore, there has recently been renewed inter-
est in mapping the genetic variants associated with reproductive isolation or
adaptive traits in the hybrid zone using so-called admixturemapping ormapping
by admixture linkage disequilibrium [9–14]. Of special interest to us are admix-
ture zones, exemplified by the previously mentioned examples in Bombina and
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Heliconius, in which complex morphological traits such as
colour patterns are segregating and are probably of adaptive
significance [15,16].

Mimetic traits in admixture zones, or otherwise, have
often been hypothesized to be associated with so-called
supergenes [17]. Supergenes are tightly linked clusters of
genes that control a suite of traits that will allow Mendelian,
or close to, Mendelian behaviour of the mimicry trait. The
existence of such supergenes could help us explain the
strong phenotypic correlation between many different pheno-
types required to produce pure mimetic forms. If many traits
are needed to produce an adaptive mimetic phenotype, then
one would expect selection to favour genetic variants that
increase the correlation between these traits. Much discussion
has ensued on the existence of supergenes, particularly in
relation to mimetic phenotypes in butterflies [18]. A recent
paper by Kunte et al. [19] shows that a proposed supergene
underlying memetic phenotypes in Papilio butterflies in fact
is a single Mendelian gene that serves as a genetic switch for
the mimetic type. For both Papilio and Heliconius, it appears
that the mimetic phenotypes are often controlled by one or a
few genes or supergenes that behave in a largely Mendelian
fashion. However, the degree to which mimetic phenotypes
have a similar genetic basis in other systems is uncertain.

The dendrobatid frog Ranitomeya imitator [20,21] provides
us with a new vertebrate model system that shares many fea-
tures with the well-known Heliconius system. In Peru, there
are four distinct colour pattern morphs of R. imitator that
occupy different geographical regions [22]. In each of these

regions, the colour pattern of R. imitator clearly resembles
that of a co-occurring species of dendrobatid frog [20,21]. Phy-
logenetic analyses indicate that these co-occurring species
generally diverged prior to the divergence between the diver-
gent populations of R. imitator [23,24]. Evidence for rapid
divergence under selection [21,22], and the similarity of each
R. imitator colour patternmorph to themore anciently diverged
co-occurring species, indicates that R. imitator has undergone a
mimetic radiation, inwhich different populations have evolved
to resemble distinct colour patterns displayed by the local
‘model’ species [21,22]. Recent analyses of colour pattern vari-
ation, genetic structure and gene flow have identified multiple
zones of admixture where distinct colour pattern morphs of
R. imitator come into contact and interbreed [20]. These regions
vary in terms of the width of the zone of admixture and the
degree of genetic divergence (in neutral markers) found
across the zone, making this system useful for comparative
analyses of divergence. In one region, the zone of admixture
is fairly broad (7 km), and populations in the zone show high
variability that appears to include elements of both distinct
colour pattern morphs. Note in figure 1 that frogs at one
end of the admixture zone, where they are mimetic with
Ranitomeya summersi, tend to be banded with black and
orange legs, whereas frogs, on the other end, where they are
mimetic with Ranitomeya variabilis, tend to be striped with a
reticulated green and black pattern on the legs. The genetic
basis of this polymorphism is of primary interest, but given
the large genome sizes of dendrobatid frogs (e.g. up to 9 Gb,
Camper et al. [25]), lack of genetic resources and difficulty of
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Figure 1. Sketch of sampling locations along the Huallaga River (grey). The two model species (R. variabilis and R. summersi) are shown in the upper left corner
and examples of R. imitator are connected to their sampling localities. (Online version in colour.)
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captive breeding, direct mapping of the genes involved is a
non-trivial task. An objective of this paper is instead to obtain
more information about the genetic basis of this polymorphism,
solely using image analyses and limited microsatellite typing.
In particular, we will be interested in examining whether
the polymorphism is controlled by a single Mendelian gene,
perhaps a supergene, or by multiple genes.

In order to address this problem, we will first develop
automated methods for describing complex colour pattern
phenotypes based on images that can be applied in this
system and other systems. The advantage of such methods
is that they are not subject to the same biases that may
occur when a researcher chooses which traits to measure
after having observed the images. In addition, such methods
may have the potential for identifying important biological
features that were otherwise not readily identifiable.

Wewill then proceed to develop amethod for estimating the
number of genes affecting a phenotype in an admixture/hybrid
zone. For natural populations, in which controlled crosses
are difficult or expensive to carry out, and for which parent–
offspring pairs cannot easily be sampled, there are no appropri-
ate methods for determining how many genes affect a trait.
In other settings, there has been substantial previous work
on this problem. The well-known Castle–Wright estimator
[26,27] is based on the amount of segregating variation
observed in the offspring of controlled crosses of inbred lines.
The objective is to estimate the effective number of loci control-
ling a quantitative trait, i.e. the number of loci required to
explain the variance in the trait if all loci have the same effect.
There have been numerous extensions of themethod, including
the incorporation of linkage and variation in effects size [28,29].
Lande [30] showed that the assumption of complete homozyg-
osity in the parental lines is not necessary and provided an
estimator applicable to natural populations, rather than to con-
trolled crosses. Building on the idea, dating back to Pearson
[31], that the relationship between the variance in the offspring
phenotypic values andmidparent value depend on the number
of genes controlling the trait, Slatkin [32] provided another
estimator applicable to outbred populations.

We are interested in estimating the number of genes affect-
ing a trait in a hybrid/admixture zone. This is a problem that
has been considered by Szymura & Barton [4] who, based on
theory developed in Barton [33] and Barton & Bengtsson
[34], estimated the number of genes contributing to selection
against gene flow in the B. bombina versus B. variegata hybrid
zone using comparisons of the amount of linkage disequili-
brium at the centre of a hybrid zone to the width of the cline.
The method we will develop is in the spirit of the of the
Castle–Wright–Lande estimators, but is based on using a
genetically inferred admixture proportion in each individual.
This method does not require data on controlled crosses. It
also does also not rely on any assumptions regarding selection
models and processes shaping linkage disequilibrium. It is less
ambitious in that it does not attempt to determine the number
of genes affecting fitness, but the number of genes affecting an
observable phenotype. There is substantially less information
regarding the number of loci when controlled crosses have
not been performed. However, as we will show, there is still
sufficient information to distinguish between hypotheses
regarding one, two or several genes affecting the trait.

We will apply the methods developed in this paper to
images and genetic data from the aforementioned dendrobatid
frog R. imitator. Using these methods, we can estimate the

number of genes affecting the mimetic phenotype without
the use of experimental crosses or mapping approaches.

2. Image analysis/quantitative phenotyping
A common way to quantify variation in image analysis is to
extract a number of so-called descriptors, combine these into
a vector ofmeasurements for each individual and use statistical
decompositionmethods to condense the collected information.
Prior to analysis, all individuals have been warped to a
mean shape determined by Procrustes analysis [35]. Manual
annotation of 22 anatomical landmarks was used to establish
point correspondences.

Descriptors are typically designed to capture elementary
characteristics of an image, such as colouror shape. Individually,
descriptors are usually too specific, but a well-chosen suite of
descriptors can provide us with a rich basis for further analysis.

In our study, we use three different phenotypic descrip-
tors: colour/non-colour ratio, gradient orientation histograms
and shape index histograms [36], each of which is defined
on the pixel-level and described in detail in the electronic
supplementary material, S1. These descriptors collect local
zeroth-, first- and second-order information about the image.
In the current setting, these three standard descriptors can
loosely be thought of as measuring features relating to the pro-
portion of coloured area, the degree towhich changes in colour
occur along the anteroposterior axis or along the left–right axis
(banded patterns versus striped patterns), and the degree to
which the pattern consists of stripes/bands as opposed to reti-
culation, respectively. The quantified information is visualized
in figure 2 and in the electronic supplementary material, S1.

All descriptors are extracted on a per-pixel basis and
pooled together at four distinct interest points, namely each
of the frog’s legs, lower back (dorsum) and on the back of the
head. An interest point is defined in terms of its coordinates
xk ¼ [xk, yk] and a radius rk . 0. Thus, an average of each of
the descriptors is accumulated for the four regions shown in
figure 2c (see also the electronic supplementary material, S1).

(a) Revealing a mimicry-related phenotype with sparse
discriminant analysis

The collected phenotypic descriptors are here condensed into a
single mimicry-related phenotype. This amounts to determin-
ing the low-dimensional manifold, in the high-dimensional
feature space, describing the phenotype. We have chosen to
use sparse discriminant analysis (SDA) by Clemmensen et al.
[37] for this task. More detail on this procedure can be found
in the electronic supplementary material, S1, where alternative
methods are also considered.

The composite phenotype is constructed as the linear com-
bination b of the p descriptors D ¼ [d1, d2, . . . , dp] that
best describes the mimicry across the hybridization transect,
i.e. the direction in the p-dimensional space that maximizes
the ratio of the between-group variance to the within-group
variance under elastic net regularization [38].

We define the mimicry-related phenotype for the ith indi-
vidual as the projection onto the one-dimensional subspace
spanned by b:

zi ¼
Xp

j¼1
Dijbj, (2:1)
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where Dij is the jth descriptor value for the ith individual. For
all n individuals, this is equivalent to z ¼ Db:

3. A likelihood method for identifying the
effective number of genes

We are interested in estimating the effective number of genes,
K, affecting a trait, i.e. the number of genes required to
explain the observed phenotypic variation assuming all
genes have the same effect. We assume we have a sample
of n individuals from an admixture zone, each with some
associated genetic data (e.g. microsatellite data). We will
take advantage of the fact that even limited genetic data
can be used to infer an admixture fraction for each individual,
f ¼ { fi}n1 , under the assumption that pure forms exist at each
end of the transect in the admixture zone. f and 12 f then
represent the proportion of an individual’s genome that is
identical to individuals in the right and left end of the transect,
respectively. The method we use for estimating the admixture
fractions is described in the electronic supplementary material,
S1, and is based on the kernel discriminant analysis (KDA) of
Mika & Ratsch [39] with the kernel suggested by Martin [40].
The estimated admixture proportions are shown in the
electronic supplementary material, S6.

We will assume that the phenotypic values, z ¼ {zi}n1 , are
normally distributed, given the underlying genotype, and
that each locus contributing to the phenotype has the same
effect and dominance factors, and that the effects are additive
among loci. We will also assume that each locus is di-allelic
and that the allele favouring the phenotype in the right end
of the transect has frequency 1 in the right extreme of the
transect and frequency 0 in the left end of the transect. We
will also, without loss of generality, denote the alleles favour-
ing the phenotype in the right and left ends of the transect
by a and A, respectively. An individual with admixture
proportion f, assuming independence among the parental

contributions, then has genotype AA in any locus with
probability (12 f )2.

We consider the phenotype, z, of an individual to be a
realization of the stochastic variable Z with the conditional
distribution

Z j g ! N (hTm, s2
e ), (3:1)

where s2
e is the environmental variance and g ¼ {Gk}K1 is a

vector of the K genotypes

Gk ¼
0 if AA, p(Gk ¼ 0jf) ¼ (1" f)2

1 if Aa, p(Gk ¼ 1jf) ¼ 2f(1" f)
2 if aa, p(Gk ¼ 2jf) ¼ f2 :

8
<

: (3:2)

Three averages are used for the conditional Gaussians m ¼
[m0, m1, m2]T and

hk ¼ [h0, h1, h2]T , where hq ¼
1
K

XK

k¼1

I(Gk ¼ q),

i.e. a vector containing fractions of the K genes having the
genotypes AA, Aa and aa respectively.

So, for example, if K ¼ 3, an individual with genotypes
AA, AA and aa in the three loci, respectively, will have
mean phenotype 2m0 þ m2.

Thus, in a noise-free scenario, a single gene would be able
to explain a trait as a piecewise constant function (of the
admixture proportion) with three steps. K genes would be

able to explain a trait attaining K þ 2
2

! "
different values.

Here, a noise-free scenario would mean no environmen-
tal variance in the phenotype and no noise caused by the
quantification of the phenotype.

To calculate the likelihood, all possible combinations
of genotypes must be considered. The set of all possible
combinations will be denoted G(K) ¼ {0, 1, 2}K, i.e. the
Kth Cartesian power of possible genotypes, where a single
tuple from this set will be denoted gj ¼ [Gj1, Gj2, . . . , GjK]:
This set consists of all possible combinations, with
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Figure 2. Examples of phenotypic descriptors and illustration of the spatial pooling scheme with four interest points. (a) Gradient at b ¼+(p/2). (b) Shape index
at b ¼2 0.8. (c) Pooling of phenotypic descriptors. (Online version in colour.)
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replacement, where the order is significant. A total of 3K such
combinations exists.

The probability of a certain combination of genotypes gj
given the mixture proportion f is

p(gjjf) ¼
YK

k¼1

p(Gjkjf):

The likelihood of observing the phenotypic trait over the
entire population, allowing K genes to contribute to the
expression of the trait, is modelled as

pK(zjf) ¼
Yn

i¼1

X

gj[G(K)

p(zijgj)p(gjj fi)

2

4

3

5 : (3:3)

However, the estimates of fi may be associated with stat-
istical uncertainty. Ignoring this uncertainty could lead to
biased estimates. We therefore provide an alternative formu-
lation that incorporates uncertainty in the estimates of fi using
a bootstrap approach, i.e. we assume that marker loci used
for estimation of fi have been bootstrapped to provide a boot-
strap distribution {f bi }

B
b¼1: The likelihood of observing the

phenotypic trait over the entire population, allowing K
genes to contribute to the expression of the trait, is then
modelled as

pK(zjf) ¼
Yn

i¼1

X

gj[G(K)

p(zijgj)
1
B

XB

b¼1

p(gjjf
b
i )

2

4

3

5: (3:4)

For a fixed value of K, we maximize this function for m0,
m1, m2 and s2

e using the Broyden-Fletcher-Goldfarb-Shanno
algorithm [41]. We then repeat this procedure for multiple
values of K and choose the value of K that maximizes this pro-
file likelihood function as our maximum-likelihood estimate of
K. To increase the probability of converging to a global maxi-
mum, we use a scheme with multiple starting points, see the
electronic supplementary material, S2 for details.

We evaluate the performance of the method using simu-
lations allowing for varying heritability and uncertainty in
the estimates of f. The heritability is defined as the fraction
of the total phenotypic variance VP that can be attributed to
genetic variance:

H2 ¼ VG

VP
¼ VG

VG þ s2
e
: (3:5)

The average phenotypic value is !z ¼
PNG

j¼1 zj pj, where zj
is the phenotypic value determined by the genotype and pj
is the proportion of individuals with the jth genotype.

The genetic variance is determined as

VG ¼
XNG

j¼1
(zj " !z)2 pj: (3:6)

To simulate data for a phenotype determined by K genes, n
mixture proportions f ¼ { fi}n1 are drawn, e.g. from a uniform
distribution on the interval [0, 1]. The genotype for each of
the K loci is then drawn from a multinomial distribution with
probabilities as in equation (3.2). Phenotypes are then assigned
by simulating from a normal distribution as in equation (3.1).
In simulations with noise in the estimate of f, we simulate B
samples from a normal distribution with standard deviation
sf around fi, such that mixture proportions used for inference

f̂ bi ! N ( fi, s2
f ):

4. Image and microsatellite data
We used published microsatellite data from three sources:
Twomey et al. [20] (92 samples), Twomey et al. [42] (36
samples) and Twomey [43]. The final dataset consisted of
285 R. imitator individuals from 16 localities in Peru: the 11
localities shown in figure 1 and five localities between
Santa Rosa de Chipaota and Achinamisa (i.e. within the
banded-striped transition area). For the unpublished microsa-
tellite data, amplification methods follow Twomey et al. [20].

We used JPEG compressed images of sixR. summersi, seven
R. variabilis and 304R. imitator individuals from the 11 localities
shown in figure 1. The images are 3888 $ 2592 pixels of size
captured with a Canon EOS Rebel XS SLR. Both microsatellite
data and image data were available for 179 of the R. imitator
individuals. See the electronic supplementary material, S5 for
a full overview of the image material.

5. Results
(a) Phenotypic descriptors
The phenotypic descriptors described in §2were automatically
extracted from all 317 images. Different aspects of the patterns
in the population are captured by this collection of descriptors,
the most dominant being the stripe directionality; for more
detail on the phenotypic variance captured by these descrip-
tors, see the electronic supplementary material, S1. For every
individual, the suite of descriptors extracted for the four inter-
est points (left leg, right leg, lower back, upper back) are
colour/non-colour ratios for each point of interest, gradient
orientation histograms binned in two bins at scales s ¼ [2, 7]
with tonal range b ¼ 1 and shape index histograms in five
bins at scales s ¼ [4,8] with tonal range b ¼ 1. This adds
up to a total of p ¼ 4 . (1 þ 2 . 2 þ 5 . 2) ¼ 60 extracted phenoty-
pic descriptors collected in D [ Rn$p: The columns of this
matrix are centred and normalized to unit variance prior to
further analysis.

(b) Mimicry-related phenotype
We use SDA to identify the linear combination of phenotypic
descriptors that best captures the variation in mimetic pheno-
types. Under the assumption that the mimetic phenotype has
been under selection to resemble the phenotypes of either
R. variabilis in one end of the transect, or R. summersi in the
other, we use images of seven R. variabilis individuals to rep-
resent one group and six imaged R. summersi the other group,
as the training set. The R. imitator individuals only enter the
analysis to influence the choice of regularization parameter;
see details in the electronic supplementary material, S1.

In the supplementary material, we also provide results
when instead using the most extreme R. imitator populations
to represent the end populations. There are disadvantages
and advantages of both of these approaches. Using the
model species amounts to defining the mimicry-related phe-
notype in terms of similarity to those species. This is desirable
when the mimicry-related phenotype is of prime interest.
However, it has the disadvantage that the two model species
may differ in traits not mimicked by R. imitator. Using the
most extreme R. imitator populations has the disadvantage
that some of the individuals may not be pure mimetic
forms. We obtained similar results using either of these
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approaches, or if we pool both the most extreme R. imitator
populations and the model species individuals (see the elec-
tronic supplementary material). In the following, we will
refer to the extreme groups as the mimicry-defining groups,
independently of how they were defined. Combinations of
these different ways of specifying the mimicry-defining
groups and the three manifold learning methods used
to quantify the phenotype are included as the electronic
supplementary material, S1.

The mimicry-related phenotypic value for each individual
is obtained by projecting onto the direction b according to
equation (2.1) and will be denoted zi for the ith individual.
The values are scaled linearly such that the average value
for each of the model species is 21 and 1, respectively.

Grouping the individuals by location and ordering them
along the transect from south to north (figure 1), a boxplot
summarizing themimicry-related phenotypic values as a func-
tion of location can be seen in figure 3. Note that the first half of
the locations tend to have a value similar to R. summersi,
whereas the other half have values closer to R. variabilis.
Chipesa and Callanayacu have phenotypic values that are
more intermediate and with relative high variances. Note
that the ordering of the locations on the x-axis does not
correspond to the actual geographical distances.

(c) Simulation studies
We evaluated the accuracy of the method for determining the
number of genes underlying a quantitative phenotype

presented in §3 on simulated data for different values of the
heritability (see Methods section in the electronic supple-
mentary material). The accuracy is evaluated under a variety
of scenarios constructed by: (i) varying the true number of
genes K, (ii) sampling the admixture proportions from a
uniform or a bimodal distribution, and (iii) adding white
noise to the admixture proportions. The heritability was
varied by simulating data for 1000 different values of s2

e :

The graphs in figure 4 show kernel density estimates of
the median-likelihood ratios, 5th and 95th percentiles of the
hypothesis of K ¼ 1, 2, 3 or 4 genes versus the alternative
hypothesis of the true number of genes under which the data
are simulated. Thus, a negative likelihood ratio means that
the correct number of genes is selected. Simulated data and
likelihood ratios for a few of these thousands of simulations
can be found in the electronic supplementary material, S3.

Generally, the chance of accurate estimation is reduced
when: (i) the true number of genes is high, (ii) the heritability
decreases, or (iii) the sample size decreases. A measure of
confidence in the inference can be obtained by bootstrapping
individuals, using the likelihood ratios comparing different
hypotheses as statistics. However, if the estimates of f are
very noisy, there tends to be a systematic bias towards a
higher number of genes for intermediate heritabilities. The
effect of this can be seen in figure 4d. Using a bootstrap
test, we find 26.63 and 0.30 as the 5th and 95th percentiles
of the likelihood ratio associated with the null hypothesis of
H0 :K ¼ 3 versus H1 : K ¼ 4, for the scenario with a heritabil-
ity of approx. 0.85, despite the fact that K ¼ 3 is the true
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Figure 3. Composite mimicry-related phenotype. Locations are ordered left to right from south to north along the Huallaga River. The dot on each box indicates the
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number of underlying genes. Thus, sensitivity to estimation
variance in the admixture proportion must be kept in mind
when applying this likelihood model.

(d) Number of genes underlying the mimicry
phenotype

The above-described likelihood model was used to estimate
the number of genes underlying the quantified phenotype
in R. imitator. We use 1000 bootstrap replicates to obtain a
distribution of likelihood ratios between different alternative
models. The bootstrap is performed by sampling individuals
with replacement. First, a bootstrap distribution of the mix-
ture proportions for each individual is obtained using the
available 285 samples. We take into account uncertainty in
the estimation of f, by, for each simulation, re-estimating f
(see the electronic supplementary material, S2) by also
bootstrapping microsatellite loci within each individual.

The maximum-likelihood values of K, for K ¼ f1, . . ., 5g
were then determined for each replicate in a separate bootstrap
experiment using the 179 samples with the genetic and

phenotypic data available. Figure 5a shows a boxplot of the
distribution of likelihood ratios associated with the hypothesis
H0 :K ¼ k for k ¼ 1, 2, 3, 4, 5, against the alternative hypothesis
of HA :K ¼ 1 and figure 5b the proportion of bootstrap repli-
cates in which each model obtained the highest likelihood
value. This proportion can be interpreted as a measure of stat-
istical confidence. In the electronic supplementary material, S4
the full distribution of likelihood ratios associated with the test
of H0 :K ¼ 2 against HA :K ¼ 1 can be seen.

The maximum log-likelihood values are numerically high-
est for K ¼ 1, and in the vast majority of the runs, this model
is selected as the most likely. The point estimates of the
parameters for the hypothesis of K ¼ 1 are [m0, m1, m2, se] ¼
[0.882,0.071,2 0.855,0.274]. The p-value associated with
different model comparisons is shown in table 1.

Overall, a model with one (K ¼ 1) or two genes (K ¼ 2)
seems to fit the data best, whereas three genes (K ¼ 3) cannot
be rejected. The mimetic phenotype, as measured here, is
probably mostly influenced by one or two genes of major
effect. No combinations of the three different ways of defining
the end populations suggest more than three genes. Using
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Figure 4. Likelihood ratios as a function of the heritability H2 for simulated data. The graphs show median-likelihood ratios (solid lines), 5th and 95th
percentiles (dashed lines) for K ¼ f1,. . .,5g versus the true K. The captions show the true parameters used to simulate the data for each scenario. One
thousand estimations were performed for each of the scenarios. All simulations show that there is never significant support for choosing the wrong value
of K, except when the estimation noise on f is high (d ) where the model is biased towards a higher number of genes for intermediate values of H2.
(a) K ¼ 1, f ! U(0, 1), (b) K ¼ 3, f ! U(0, 1), (c) K ¼ 1, f ! U(0, 1)þN (0, 0:012), (d ) K ¼ 3, f ! U(0, 1)þN (0, 0:12): (Online version
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alternative, nonlinear, manifold learning algorithms to quantify
the mimicry-related phenotype (see the electronic supple-
mentary material, S1), only a single combination (KDA with
the model species defining the end groups) cannot reject H0 :
K ¼ 4 versus the alternative of H1 :K ¼ 3 with a p-value of
less than 0.05.

6. Discussion
We have here developed an automated procedure for charac-
terizing complex phenotypes from images. We believe that
this method, or related methods, could be of use in many sys-
tems where images are available for complex phenotypes.
Automated extraction of phenotypic descriptors reduces the
subjective biases that may occur when measurements are
taken manually and allows for reproducibility of results.
While other biases may be introduced through the choice of
an image capturing system, lighting conditions and/or
choice of descriptors, we believe these to be easier to identify
and overcome. We note that such image analyses open up the
possibility for a variety of statistical analyses of phenotypes,
and their correlations, not pursued here. In this paper, we
use the image analyses to define a quantitative measure of
the mimetic phenotype in a transition zone between morphs
of R. imitator. Using a new method for estimating the effective

number of genes affecting this phenotype, we show that the
phenotype we measure is likely to be controlled by one or
two, or at most three, genes of major effect, and is very unlikely
to be affected by many major effect genes. However, there
could be substantial phenotypic variation controlled by other
genes, but not captured by our quantitative measure of
mimetic phenotype.

The fact that we have identified a measure of mimetic
phenotype that is controlled by a few genes suggests that
future studies aimed at mapping this phenotype have a rela-
tively high probability of succeeding. It is substantially easier
to map the genes underlying a phenotype controlled by just
one or a few genes, than a phenotype controlled by many
genes. The phenotype defined here would be useful for
such mapping studies.

We can compare our results with Heliconius butterflies
where the genetic basis of Müllerian mimicry is better under-
stood. In Heliconius erato, the transition between the ‘postman’
and the ‘rayed’ morphs in the well-studied hybrid zone near
Tarapoto, Peru is controlled by three loci of major effect,
whereas in the co-mimetic Heliconius melpomene, the same
mimetic shift (postman to rayed) is controlled by five loci [44].
In another example, the polymorphism in Heliconius cydno
alithea in western Ecuador is controlled by two unlinked loci,
one that controls colour (white/yellow) and one that controls
pattern (presence/absence of melanin in a specific region of
the forewing) [45]. In poison frogs, the genetic basis of colour
variation is less well understood. Early crossing studies in
Oophaga pumilio [46] suggested that pattern is probably con-
trolled by a single locus with a dominant melanin-producing
allele, whereas colour may be polygenic or controlled by a
single locus with incomplete dominance. However, unlike
O. pumilio, in which a major axis of variation in pattern is pres-
ence/absence of melanin, all known populations of R. imitator
possess melanin on the dorsum, legs and venter. Thus, a more
relevant task in the R. imitator system would be identifying the
gene or genes that influence the spatial distribution of melanin
rather than its presence or absence. Finally, in a field pedigree
study [47], it was suggested that the red/yellow polymorphism
in a population of O. pumilio was controlled by a single locus
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Table 1. p-values for hypotheses of the number of genes, where different
mimicry-defining groups are chosen. (SDA is used with regularization
parameter d ¼ 0.01 and nþ non-zero loadings. p-values of less than 0.05
are typeset in bold and p-values more than 0.95 are typeset in italic. See
the electronic supplementary material S1 for more details.)

p(k52)/ p(k53)/ p(k54)/ p(k55)/
groups n1 (k51) (k52) (k53) (k54)

models 13 0.401 0:030 0:011 0:000

imitator 33 0.989 0.136 0:000 0:025

both 28 0.964 0.158 0:014 0:015
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where red coloration was completely dominant over yellow.
Thus, ourestimates of one to three genes controlling themimetic
phenotype of R. imitator are fairly comparable to other systems.

The methodwe have developed for identifying the number
of genes controlling a phenotype obtains its information from
the degree of clustering of phenotypes and from the depen-
dence of variance in the phenotype on the admixture fraction.
It can, as illustrated here, be used to distinguish between one,
two or several genes, but is not expected to perform well in
estimating the exact number of genes, when many genes are
involved. In the presence of many genes, the information
regarding clustering of phenotypes is lost. We note that the
method can be sensitive to the precision in the estimate of
the admixture fraction, and results of the method should be

interpreted accordingly. Implementations of the presented
methods are publicly available at https://github.com/schackv.
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